Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.207
1.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747267

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Molecular Docking Simulation , Pyrazoles , Pyrimidines , Trypanocidal Agents , Trypanosoma brucei brucei , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Trypanosoma brucei brucei/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Leishmania mexicana/drug effects , Leishmania major/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Computer Simulation , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Structure-Activity Relationship , Parasitic Sensitivity Tests
2.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710746

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
3.
Anal Chem ; 96(19): 7723-7729, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695281

Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (kpos' = 0.373 s-1) that is better than other charged ones (kzwi' = 0.031 s-1, kneu' = 0.013 s-1, kneg' = 0.003 s-1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.


Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Dithionite/chemistry , Azo Compounds/chemistry , Kinetics
4.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731445

Reducing high concentrations of pollutants such as heavy metals, pesticides, drugs, and dyes from water is an emerging necessity. We evaluated the use of Luffa cylindrica (Lc) as a natural non-conventional adsorbent to remove azo dye mixture (ADM) from water. The capacity of Lc at three different doses (2.5, 5.0, and 10.0 g/L) was evaluated using three concentrations of azo dyes (0.125, 0.250, and 0.500 g/L). The removal percent (R%), maximum adsorption capacity (Qm), isotherm and kinetics adsorption models, and pH influence were evaluated, and Fourier-transform infrared spectroscopy and scanning electron microscopy were performed. The maximum R% was 70.8% for 10.0 g L-1Lc and 0.125 g L-1 ADM. The Qm of Lc was 161.29 mg g-1. Adsorption by Lc obeys a Langmuir isotherm and occurs through the pseudo-second-order kinetic model. Statistical analysis showed that the adsorbent dose, the azo dye concentration, and contact time significantly influenced R% and the adsorption capacity. These findings indicate that Lc could be used as a natural non-conventional adsorbent to reduce ADM in water, and it has a potential application in the pretreatment of wastewaters.


Azo Compounds , Coloring Agents , Luffa , Water Pollutants, Chemical , Water Purification , Luffa/chemistry , Azo Compounds/chemistry , Azo Compounds/isolation & purification , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Kinetics , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Water/chemistry
5.
Int J Biol Macromol ; 267(Pt 2): 131478, 2024 May.
Article En | MEDLINE | ID: mdl-38604434

In this study, an environmentally friendly, effective, easily synthesizable and recoverable nano-sized catalyst system (Ag@NaAlg-keratin) was designed by decorating Ag nanoparticles on microbeads containing sodium alginate (NaAlg) and keratin obtained from goose feathers. The structure, morphology and crystallinity of the Ag@NaAlg-keratin nanocatalyst were evaluated by XRD, FT-IR, FE-SEM, EDS/EDS mapping and TEM analyses. Catalytic ability of designed Ag@NaAlg-keratin nanocatalyst was then investigated against 4-nitrophenol (4-NP) and methyl orange (MO) reductions. Ag@NaAlg-keratin nanocatalyst effectively reduced 4-NP in 6 min and MO in 5 min, with rate constants of 0.17 min-1 and 0.16 min-1, respectively. Additionally, activation energies (Ea) were found as 39.8 kJ/mol for 4-NP and 37.9 kJ/mol for MO. Performed recyclability tests showed that the Ag@NaAlg-keratin nanocatalyst was easily recovered due to its microbead form and successfully reused five times, maintaining both its activity and structure. Furthermore, antioxidant activity of Ag@NaAlg-keratin nanocatalyst was the highest (73.16 %).


Alginates , Antioxidants , Keratins , Metal Nanoparticles , Microspheres , Silver , Alginates/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Keratins/chemistry , Catalysis , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Nitrophenols/chemistry , Feathers/chemistry , Azo Compounds/chemistry
6.
Int J Biol Macromol ; 267(Pt 2): 131533, 2024 May.
Article En | MEDLINE | ID: mdl-38608988

As a renewable aromatic compound with enormous production potential, lignin has various potential high-value utilization pathways, but the success achieved in the field of photocatalysis is limited. Herein, this work prepares a new type of photocatalyst by modifying Graphitic Carbon Nitride Nanotubes (CNT) with self-assembled lignin nanospheres for the photocatalytic production of H2O2 and the degradation of azo dyes. Under light conditions, lignin enhances the production of H2O2 through oxygen reduction and collaborates with carbon nitride tubes to generate O2- and 1O2. Furthermore, carbon nitride tubes form electron-rich regions with lignin, promoting the transfer of electrons from adsorbed aromatic pollutants to this region, thereby facilitating their degradation. The experimental results indicate that the addition of 5 % lignin significantly enhances the photocatalytic degradation efficiency of azo dyes, with a degradation rate 1.87 times higher than that of the original carbon nitride tubes. Furthermore, CNL also have excellent degradation ability to pollutants in actual wastewater. This study provides new insights and prospects for the high-value utilization of lignin, enabling it to be used as a photocatalytic co-catalyst to participate in the photocatalytic degradation of environmental pollutants.


Graphite , Hydrogen Peroxide , Lignin , Lignin/chemistry , Graphite/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Nanotubes/chemistry , Nitriles/chemistry , Azo Compounds/chemistry , Boron Compounds/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Nanotubes, Carbon/chemistry , Nitrogen Compounds
7.
ACS Nano ; 18(17): 11042-11057, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38627898

PD-1 blockade is a first-line treatment for recurrent/metastatic cervical cancer but benefits only a small number of patients due to low preexisting tumor immunogenicity. Using immunogenic cell death (ICD) inducers is a promising strategy for improving immunotherapy, but these compounds are limited by the hypoxic environment of solid tumors. To overcome this issue, the nanosensitizer AIBA@MSNs were designed based on sonodynamic therapy (SDT), which induces tumor cell death under hypoxic conditions through azo free radicals in a method of nonoxygen radicals. Mechanistically, the azo free radicals disrupt both the structure and function of tumor mitochondria by reversing the mitochondrial membrane potential and facilitating the collapse of electron transport chain complexes. More importantly, the AIBA@MSN-based SDT serves as an effective ICD inducer and improves the antitumor immune capacity. The combination of an AIBA@MSN-based SDT with a PD-1 blockade has the potential to improve response rates and provide protection against relapse. This study provides insights into the use of azo free radicals as a promising SDT strategy for cancer treatment and establishes a basic foundation for nonoxygen-dependent SDT-triggered immunotherapy in cervical cancer treatment.


Immunotherapy , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/immunology , Female , Free Radicals/chemistry , Humans , Mice , Animals , Azo Compounds/chemistry , Azo Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects
9.
Langmuir ; 40(18): 9761-9774, 2024 May 07.
Article En | MEDLINE | ID: mdl-38663878

Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.


Azo Compounds , Liposomes , Molecular Dynamics Simulation , Azo Compounds/chemistry , Azo Compounds/radiation effects , Liposomes/chemistry , Nanoparticles/chemistry , Ultraviolet Rays , Fluoresceins/chemistry , Photochemical Processes
11.
Bioresour Technol ; 400: 130698, 2024 May.
Article En | MEDLINE | ID: mdl-38615967

The growing textile industry produces large volumes of hazardous wastewater containing dyes, which stresses the need for cheap, efficient adsorbing technologies. This study investigates a novel preprocessing method for producing activated carbons from abundantly available softwood bark. The preprocessing involved a continuous steam explosion preconditioning step, chemical activation with ZnCl2, pyrolysis at 600 and 800 °C, and washing. The activated carbons were subsequently characterized by SEM, XPS, Raman and FTIR prior to evaluation for their effectiveness in adsorbing reactive orange 16 and two synthetic dyehouse effluents. Results showed that the steam-exploded carbon, pyrolyzed at 600 °C, obtained the highest BET specific surface area (1308 m2/g), the best Langmuir maximum adsorption of reactive orange 16 (218 mg g-1) and synthetic dyehouse effluents (>70 % removal) of the tested carbons. Finally, steam explosion preconditioning could open up new and potentially more sustainable process routes for producing functionalized active carbons.


Azo Compounds , Charcoal , Plant Bark , Steam , Adsorption , Plant Bark/chemistry , Azo Compounds/chemistry , Charcoal/chemistry , Coloring Agents/chemistry , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Water Purification/methods , Water Pollutants, Chemical , Wastewater/chemistry , Spectrum Analysis, Raman
12.
Environ Sci Pollut Res Int ; 31(19): 28025-28039, 2024 Apr.
Article En | MEDLINE | ID: mdl-38523211

Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.


Cobalt , Ferric Compounds , Singlet Oxygen , Cobalt/chemistry , Ferric Compounds/chemistry , Singlet Oxygen/chemistry , Superoxides/chemistry , Azo Compounds/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry
13.
J Phys Chem Lett ; 15(13): 3531-3540, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38526058

Photoswitchable molecules can control the activity and functions of biomolecules by triggering conformational changes. However, it is still challenging to fully understand such fast-triggering conformational evolution from nonequilibrium to equilibrium distribution at the molecular level. Herein, we successfully simulated the unfolding of the FK-11 peptide upon the photoinduced trans-to-cis isomerization of azobenzene based on the Markov state model. We found that the ensemble of FK-11 contains five conformational states, constituting two unfolding pathways. More intriguingly, we observed the microsecond-scale conformational propagation of the FK-11 peptide from the fully folded state to the equilibrium populations of the five states. The computed CD spectra match well with the experimental data, validating our simulation method. Overall, our study not only offers a protocol to study the photoisomerization-induced conformational changes of enzymes but also could orientate the rational design of a photoswitchable molecule to manipulate biological functions.


Azo Compounds , Peptides , Peptides/chemistry , Azo Compounds/chemistry , Computer Simulation
14.
Chemosphere ; 356: 141747, 2024 May.
Article En | MEDLINE | ID: mdl-38556178

The present study aims to establish NaOCl as a potential oxidant in the COD removal of Acid Orange 8 using UVC light (λ = 254 nm) and Fe2+ as catalysts. The different systems used in this study are NaOCl, Fe2+/NaOCl, UV/NaOCl, and Fe2+/NaOCl/UV. All these process were found to be operative in acidic, neutral and basic medium. The initial decolorisation and COD removal efficiency (CODeff) for different systems follow the order: Fe2+/NaOCl/UV > UV/NaOCl > Fe2+/NaOCl > NaOCl. Nevertheless, NaOCl can alone be used in the treatment process considering its CODeff to the extent of 95% in 90 min. The change in pH of the solutions after treatment is an important observation - for non-UV systems it remained around 11.0 and 7.0 in other systems. Thus, UV systems are environmental benign. The effect of various anions on CODeff was tested in Fe2+ systems. Presence of F- ions were found to accelerate CODeff in both the systems. However, the effect is more pronounced in Fe2+/ NaOCl/UV, where complete CODeff was observed in the presence of 9.0 gl-1 of F-. The COD removal kinetics for all systems was studied using zero-order, first-order, second-order, and BMG kinetic models. BMG model was found to be more suitable among all and is in good agreement with CODeff of all systems. It is, therefore, established that NaOCl can serve as a powerful oxidant in the advanced oxidation process.


Azo Compounds , Iron , Oxidants , Sodium Hypochlorite , Ultraviolet Rays , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Catalysis , Oxidants/chemistry , Sodium Hypochlorite/chemistry , Iron/chemistry , Azo Compounds/chemistry , Kinetics , Biological Oxygen Demand Analysis , Benzenesulfonates/chemistry , Hydrogen-Ion Concentration , Waste Disposal, Fluid/methods , Oxidation-Reduction
15.
ACS Macro Lett ; 13(3): 273-279, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38345474

The immune system can recognize and respond to pathogens of various shapes. Synthetic materials that can change their shape have the potential to be used in vaccines and immune regulation. The ability of supramolecular assemblies to undergo reversible transformations in response to environmental stimuli allows for dynamic changes in their shapes and functionalities. A meticulously designed oligo(azobenzene-graft-mannose) was synthesized using a stepwise iterative method and "click" chemistry. This involved integrating hydrophobic and photoresponsive azobenzene units with hydrophilic and bioactive mannose units. The resulting oligomer, with its precise structure, displayed versatile assembly morphologies and chiralities that were responsive to light. These varying assembly morphologies demonstrated distinct capabilities in terms of inhibiting the proliferation of cancer cells and stimulating the maturation of dendritic cells. These discoveries contribute to the theoretical comprehension and advancement of photoswitchable bioactive materials.


Azo Compounds , Mannose , Azo Compounds/chemistry , Click Chemistry , Hydrophobic and Hydrophilic Interactions
16.
Int J Biol Macromol ; 265(Pt 1): 130442, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417745

Protein aggregation poses a significant concern in the field of food sciences, and various factors, such as synthetic food dyes, can contribute to protein aggregation. One such dye, Sunset Yellow (SY), is commonly employed in the food industry. Trypsin was used as a model protein to assess the impact of SY. We employed several biophysical techniques to examine the binding and aggregation mechanisms between SY and trypsin at different pHs. Results from intrinsic fluorescence measurements indicate a stronger interaction between SY and trypsin at pH 2.0 compared to pH 6.0. Turbidity data reveal trypsin aggregation in the presence of 0.05-3.0 mM SY at pH 2.0, while no aggregation was observed at pH 6.0. Kinetic data demonstrate a rapid, lag-phase-free SY-induced aggregation of trypsin. Circular dichroism analysis reveals that trypsin adopts a secondary structure in the presence of SY at pH 6.0, whereas at pH 2.0, the secondary structure was nearly lost with increasing SY concentrations. Furthermore, turbidity and kinetics data suggest that trypsin aggregation depends on trypsin concentrations and pH. Our study highlights potential health risks associated with the consumption of SY, providing insights into its impact on human health and emphasizing the necessity for further research in this field.


Coloring Agents , Protein Aggregates , Humans , Coloring Agents/chemistry , Trypsin , Azo Compounds/chemistry
17.
Environ Res ; 249: 118427, 2024 May 15.
Article En | MEDLINE | ID: mdl-38325780

Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.


Benzhydryl Compounds , Phenols , Polymers , Water Pollutants, Chemical , Adsorption , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Porosity , Polymers/chemistry , Benzhydryl Compounds/chemistry , Green Chemistry Technology/methods , Azo Compounds/chemistry , Recycling/methods , Water Purification/methods
18.
ACS Chem Biol ; 19(2): 451-461, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38318850

Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.


Azo Compounds , Light , Humans , Azo Compounds/toxicity , Azo Compounds/chemistry , Proteins/metabolism , Isomerism , Porins/metabolism
19.
Chemosphere ; 346: 140568, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303387

Discharge of untreated dyeing wastewater nearby water-bodies is one of major causes of water pollution. Generally, bacterial strains isolated from industrial effluents and/or contaminated soils are used for the bioremediation of Methyl orange (MO), a mutagenic recalcitrant mono-azo dye, used in textiles and biomedical. However, MO degradation by biofilm producing plant growth-promoting rhizobacteria (BPPGPR) was not studied yet. In this study, 19 out of 21 BPPGPR strains decolorized 96.3-99.9% and 89.5-96.3% MO under microaerophilic and aerobic conditions, respectively from Luria-Bertani broth (LBB) followed by yeast-extract peptone and salt-optimized broth plus glycerol media within 120 h of incubation at 28 °C. Only selected BPPGPR including Pseudomonas fluorescens ESR7, P. veronii ESR13, Stenotrophomonas maltophilia ESR20, Staphylococcus saprophyticus ESD8, and P. parafulva ESB18 were examined for process optimization of MO decolorization using a single factor optimization method. This study showed that under optimal conditions (e.g., LBB, 100 mg L-1 MO, pH 7, incubation of 96 h, 28 °C), these strains could remove 99.1-99.8% and 97.6-99.5% MO under microaerophilic and aerobic conditions, respectively. Total azoreductase and laccase activities responsible for biodegradation were also remarkably activated in the biodegraded samples under optimal conditions, while these activities were repressed under unfavorable conditions (e.g., 40 °C and 7.5% NaCl). This study confirmed that MO was degraded and detoxified by these bacterial strains through breakage of azo bond. So far, this is the first report on bioremediation of MO by the BPPGPR strains. These BPPGPR strains are highly promising to be utilized for the bioremediation of dyeing wastewater in future.


Coloring Agents , Wastewater , Coloring Agents/chemistry , Mutagens , Biodegradation, Environmental , Bacteria/metabolism , Azo Compounds/chemistry
20.
Sci Rep ; 14(1): 208, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167448

Analysis of food additives is highly significant in the food industry and directly related to human health. This investigation into the removal efficiency of sunset yellow as an azo dye in fruit juices using Chitosan-nickel ferrite nanoparticles (Cs@NiFe2O4 NPs). The nanoparticles were synthesized and characterized using various techniques. The effective parameters for removing sunset yellow were optimized using the response surface methodology (RSM) based on the central composite design (CCD). Under the optimum conditions, the highest removal efficiency (94.90%) was obtained for the initial dye concentration of 26.48 mg L-1 at a pH of 3.87, a reaction time of 67.62 min, and a nanoparticle dose of 0.038 g L-1. The pseudo-second-order kinetic model had a better fit for experimental data (R2 = 0.98) than the other kinetic models. The equilibrium adsorption process followed the Freundlich isotherm model with a maximum adsorption capacity of 212.766 mg g-1. The dye removal efficiency achieved for industrial and traditional fruit juice samples (91.75% and 93.24%), respectively, confirmed the method's performance, feasibility, and efficiency. The dye adsorption efficiency showed no significant decrease after five recycling, indicating that the sorbent has suitable stability in practical applications. variousThe synthesized nanoparticles can be suggested as an efficient sorbent to remove the sunset yellow dye from food products.


Chitosan , Water Pollutants, Chemical , Humans , Chitosan/chemistry , Fruit and Vegetable Juices , Hydrogen-Ion Concentration , Azo Compounds/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry
...